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CLASS NUMBER PARITY FOR THE pTH CYCLOTOMIC FIELD 

PETER STEVENHAGEN 

ABSTRACT. We study the parity of the class number of the pth cyclotomic field 
for p prime. By analytic methods we derive a parity criterion in terms of 
polynomials over the field of 2 elements. The conjecture that the class number is 
odd for p a prime of the form 2q + 1 , with q prime, is proved in special cases, 
and a heuristic argument is given in favor of the conjecture. An implementation 
of the criterion on a computer shows that no small counterexamples to the 
conjecture exist. 

1. INTRODUCTION 

In this paper, we will be interested in the parity of the class number hp of 
the pth cyclotomic field Q(Cp) for p a prime number. This question, and more 
generally the parity of abelian number fields, has been studied since Kummer 
introduced cyclotomic class numbers, and the literature on the subject is quite 
extensive. We refer to [4, 10] and the references given there for results on the 
parity of class numbers that will not be mentioned in the sequel. 

We will not be concerned with general parity criteria for large classes of 
abelian fields as in [6, 7], but restrict ourselves to the special case of a cyclotomic 
field of prime conductor. This is the simplest example of a cyclotomic field, and 
it has a certain classical status ever since Kummer introduced the theory of ideal 
factorization for it that became the basis of algebraic number theory. Moreover, 
it turns out that the parity problem is the hardest for this field, since many 
criteria for the class number to be even, like those of Cornell and Rosen [2] that 
we will discuss momentarily, only apply to fields of composite conductor. 

We will derive a parity criterion for hp in the spirit of [3] and [5] in the case 
that p is a so-called Sophie Germain prime. This makes for easy calculation, 
both on a theoretical level, where we will show how it leads to elementary proofs 
of the known results, most notably the main result of [4], and on a computational 
level, where we will deal with primes p that are "small" in a special sense. We 
also develop a heuristic argument that shows very convincingly that we should 
not expect any Sophie Germain prime p to exist for which hp is even. 

We introduce some notation in order to describe our results in more detail. 
For n > 1 an integer, let Cln denote the class group of Q(4C,) and Cl+n 

the class group of the real subfield Q(Cn)+ * It is known that the natural map 
Cln -+ Cln is injective and that the norm map Nn: Cln -+ Cl+n is surjective 
[9, pp. 82-84]. Correspondingly, we have a decomposition hn = h-h+, where 
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h+ denotes the order of Cl+ and hn the order of ker 
N,. 

The intersection 
Cl+ n ker Nn is the 2-torsion subgroup Cl+ [2] of Cl+, and one sees that 

( 1.1 ) 21h+ => 21h. 

It follows that the parity of hn can be determined by looking at hn only. 
The number h+ is not easily computed, but its parity can be determined 

without a computation of the number itself. It has been shown by Cornell and 
Rosen [2] that h+ is even when n is divisible by five or more primes, and they 
give an explicit lower bound on the 2-rank of Cl+ that tends to infinity with 
the number of primes dividing n. When n is divisible by two, three, or four 
primes, they prove parity results for h+ and hn under additional assumptions 
on these primes. However, in the case that n = p is prime, which is the 
situation we will consider in the present paper, the methods of [2] do not yield 
anything. It is known that the class numbers hp+ and hp can be either even or 
odd. The smallest value of p for which hp is even is p = 29, and the smallest 
value for which hp+ is even is p = 163. 

We deal with the following conjecture concerning the parity of hp for Sophie 
Germain primes p, i.e., primes p for which q = (p - 1)/2 is prime. Note that 
the terminology is somewhat questionable as the prime of interest in the Sophie 
Germain criterion for the first case of Fermat's last theorem is q rather than 
p. The conjecture seems to have arisen in connection with work of Taussky 
[11], even though it is stated explicitly only in a paper of Davis [3]. More 
details on its history can be found in the introduction of [4]. A formulation 
of the conjecture in terms of the K2-group of the ring of integers of the real 
cyclotomic field can be found in [8]. 

1.2. Conjecture. If p is a Sophie Germain prime, then hp is odd. 

It has not been proved that the number of Sophie Germain primes is infinite, 
but this is what one expects. The heuristic argument in [1] can be applied in 
our special case to estimate the number P(N) of positive integers x < N for 
which both x and 2x + 1 are prime, and it leads to 

P(N)C| dt2 forN -+oo, 
J2log t 

where the constant C is defined by 

p>2 pi-me 
(p 

- 
1)2) 

This constant is known as the twin prime constant because exactly the same 
heuristics apply to the case of twin primes, in which one looks at primes x for 
which x + 2 is also prime. The numerical value of C is close to 1.32032. These 
heuristics are in reasonable accordance with numerical observations, as Table 1 
shows. In any case, we can feel confident that the number P(N) does tend to 
infinity with N . 

In this paper, we will derive the following criterion for the parity of hp for 
p a Sophie Germain prime. 
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TABLE 1 

N C fg dt P(N) 
100000 1248.4 1171 
200000 2181.4 2058 
300000 3037.0 2848 
400000 3847.6 3589 
500000 4626.9 4324 

1000000 8246.0 7746 

1.3. Theorem. Let q > 2 and p = 2q + 1 be prime numbers, and denote 
by q some isomorphism (Z/pZ)*/( 1) Z/qZ. Then the polynomial Fq = 

F(.p3)14 X+(i) E F2[X] is well defined modulo the cyclotomic polynomial Dq = 
(Xq - 1)/(X - 1), and one has 

hq is odd . gcd(Fq, (Dq) = 1 E F2[X] 

We will see in ?2 how this criterion can be used to prove Conjecture 1.2 for 
special classes of p, and in our final ?3 we will apply it to furnish a heuristic 
argument that shows that counterexamples to Conjecture 1.2 are highly unlikely 
to occur. More precisely, we show that under the assumption that the polyno- 
mial Fq behaves like a random element in F2[X]/Iq, the expected number 
of counterexamples to 1.2 is finite and very small. Some numerical data are 
presented to show that counterexamples that are small in a sense to be defined 
do not exist. For instance, one obtains the following theorem that excludes the 
existence of small values of p contradicting 1.2. 

1.4. Theorem. Suppose that p is a Sophie Germain prime for which hp is even. 
Then hp is divisible by 2 

The exponent 95 can be replaced by a higher value M if the gcd in Criterion 
1.3 is found to be equal to 1 for the finite number of Sophie Germain primes 
q = 2p + 1 for which the multiplicative order of 2 modulo p is bounded by 
M. For instance, the exponent can be replaced by 100 after the verification of 
the single case p = 841557503. We obtained the exponent 95 by checking the 
criterion on a computer for 19 values of p that are listed in Table 4.3 at the 
end of ?3. 

2. THE PARITY CRITERION 

We will now give the proof of Theorem 1.3, which is based on the analytic 
class number formula for relative class numbers [9, Theorem 3.2]. It states that 
for a totally complex abelian extension K of Q with maximal real subfield 
K+, the relative class number hj- = hK/hK+ can be written as 

(2.1) h- = QKWK II(- B1I,X) , 
x 

where WK is the order of the group ZK of roots of unity in K and QK = [EK: 
ZKEK+] E { 1, 2} is the unit index. The product ranges over all odd characters 
X: Gal(K/Q) -+ C*, and Blx is a generalized Bernoulli number. 
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Proof of 1.3. We apply (2.1) with K = Q(Cp) and note that the Bernoulli number 
corresponding to the quadratic character X = (p) is, again by (2.1), equal to 
minus the class number of the quadratic subfield Q(f/0) . It is an easily verified 
and well-known fact that this class number is odd. Using the implication (1. 1), 
we see that hp is odd if and only if the integer h* = hp /hQ(.p=-) is. Apart from 
the quadratic character, all odd characters modulo p have order 2q, and they 
are transitively permuted by the Galois group of Q(4q)/Q that acts naturally 
on their image. We obtain 

QQ(P)WQ(V) ord(X)=2q { x= 

P Q(C")/Q (2 x X(x)) 

In the last expression, we can take any fixed character X modulo p of order 
2q. It follows that h* is odd if and only if for this X the element wx = 

2q xx(X) E Z[Cq] is odd; i.e., if its residue class in Z[Cq]/2Z[Cq] is a unit. 
In order to determine whether wx is odd, we may replace it by mwx for 

any odd multiplier m E Z[CqI. As x(2) is a root of unity of order q or 2q, 
we can take m = 7(2) - 1 and use the substitution x 4 2x - p[2x/p] for 
x= 1, 2, ..., 2q = p - 1 to obtain 

1 2q 2q 1 2q 

mwx = (7(2) - 1) - E x(X)x = (x/2)X(x/2) - - xx(x) 
x=l x=1 x=1 

1 2q 2q 

= Zxx(x)- 2P E x(x) 
(*) x=1 x=q+l 

q ~ ~ ~~1q 
{xx(x) + (p - X)X(p - X)} + 2p E x(x) 

q q q 

Z xx(x) + 2P Z(X(-X) + X(X)) = E xx(x). 
x=1 x=l x=1 

Modulo the ideal (2) C Z[ q] , the character X coincides with the even character 
V = X (p), and using the identity Vx=l (x) = 0, we obtain 

q q q (q-1)/2 
E XX(X) mod 2 E: y()= EY(X) = (2 E mW =ZX() v(x= > yi(x) =yi(2) >3 y(x) . 
x=1 x=l x=1 x=1 

x odd x even 

We conclude that hp is odd if and only if 'X(-jl)/2 I(x) is odd in Z[Cq]. 
We can write Z[Cq]/2Z[q] F2[X]/Iq(X), and choosing q as stated in the 
theorem, we have V(x) = O(x) for some choice of the root of unity Cq . Obvi- 
ously, an element E aiCi is a unit in Z[jq]/2Z[Cp] if and only if the polynomial 
Z aiXi is coprime to (Dq in F2[X]. The theorem follows. o 

2.2. Remark. One can use multipliers different from m = 7(2) - 1 in the 
preceding proof to obtain versions of Theorem 1.3 in which other polynomials 
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play the role of Fq. For instance, it is immediate from equation (*) in the 
preceding proof that the choice m = 7(2) - 2 leads to mwx=p 2P Z X(X)- 
Adding 2P Eq=l (x) = 0 to this element, it follows that we may replace Fq 
in Theorem 1.3 by 

q 
F'= E x+(x). 

x=1 

As a direct consequence of the Criterion 1.3, we see that Conjecture 1.2 holds 
for the following class of Sophie Germain primes. This result appears already 
in [3]. 

2.3. Corollary. Suppose that p = 2q + 1 is a Sophie Germain prime such that 
2 is a primitive root modulo q. Then hp is odd. 
Proof. Under the assumption, (Dq is irreducible in F2[X], so the greatest com- 
mon divisor in the criterion must be 1. o 

The proof of Theorem 1.3 describes the factor h* of hp- as the norm of an 
element in Z[4Cq] . If this norm is even, it is obviously divisible by 2f(q) , where 
f (q) is the residue class degree of the primes over 2 in Q(Cq), i.e., the order of 
2 mod q in F* . We have obtained the following corollary. 

2.4. Corollary. Suppose p = 2q + 1 is a Sophie Germain prime for which hp 
is even. Then hpi is divisible by 2f(q), where f(q) is the multiplicative order of 
2 modulo q. 

We will now use Theorem 1.3 to prove Conjecture 1.2 for a class of primes 
that fails to meet the conditions of Corollary 2.3, but is still "sufficiently close" 
to these conditions. This result is due to Estes [4], who gave a rather involved 
proof that makes extensive use of the properties of Dedekind sums. Our proof 
is somewhat similar in the sense that it also points out a nonzero coefficient in 
a certain polynomial, but it is completely elementary. 

2.5. Theorem. Let p = 2q + 1 be a Sophie Germain prime with q -3 mod 4, 
and suppose that 2 mod q generates the subgroup of squares in F* . Then hp is 
odd. 
Proof. Under our hypothesis on q, the group F* is generated by 2 and -1. 
The cyclotomic polynomial (Dq then factors over F2[X] as the product of an 
irreducible polynomial of degree (q- 1)/2 and the reciprocal of this polynomial. 
We have to verify that the polynomial Fq from 1.3 is not divisible by one 
of these factors in F2[X]/Iq(X), or, equivalently, that we have the relation 

G(X) = Fq(X)Fq(X-1) :A 0 E F2[X]/Iq(X). We can write G explicitly as 
G = zp"23)2 C(Z, p)Xk(z) with coefficients given by 

(2.6) c(z,p)=#{(x,y): 1 <x,y<p/4andx-?yzmodp}mod2, 

and we have to show that the coefficients c(z, p) do not all have the same 
parity. This is true in the following generality. 

2.7. Lemma. Let p - 3 mod 4 be an arbitrary prime number, and define the 
numbers c(z, p) E Z/2Z for z = 1, 2, .. , p - 1 by (2.6). Then these numbers 
are not all equal. 
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Proof. In order to compute the numbers c(z, p), we have to count how many 
of the numbers yz, with 1 < y < p/4, lie in an interval of the form 
(kp - p/4, kp + p14) = ((4k - 1)P, (4k + 1)P) with k E Z. Using square 
brackets to denote the entier function, we can write the number of multiples of 
an integer z in an interval (a, b) with a and b not integral multiples of z 
as [b/z] - [a/z] _ [a/z] + [b/z] mod 2. Setting 1 = [z/4], we can thus express 
c(z, p) as 

(E [(4z I mod2 if4tz, 
C(Z, p) i= 21 

I j# [(2i +l)P] + [-] mod 2 if 41z. 

(In case z = 41, the largest z-multiple [P]z lies in the interval ((41 - 1)P, 
(41 + 1) ), so our last endpoint has to be taken as z .) 

This formula makes sense for any pair of nonzero integers, and it shows that 
apart from the obvious relation c(zI , p) = c(z2, p) for zI z2 mod p we also 
have c(z, PI) = c(z, P2) whenever P IP2 mod 8z . If 41z, the last conclusion 
already holds when we have Pi P2 mod 4z. If a and b are coprime to p and 
z = ab-I E (Z/pZ)*, we write c(a/b, p) for c(z, p) . In this case there is a 
similar argument showing that c(a/b, Pi) = c(a/b, P2) when P2 PI mod 8ab 
(or P2 P2 mod 4ab when ab is even). 

We have c(l, p) = [P] and c(2, p) = [i], so the first two coefficients are 
both 0 E Z/2Z if p 3 mod 16 and both 1 E Z/2Z when p -1 mod 16. 
In other cases they have different parity and we are done. 

Assume first that p _ 3 mod 16, and write p = u2m + 3 with u odd and 
m > 4. We claim that c(z, p) = 1 for z = 2m-1. Indeed, we have 41z and 
p 2m +3 mod 4z, so c(2m-1, p) = c(2m-1, 2m +3) = c(-3/2, 2m +3). The 
value of the last symbol only depends on the residue class of 2m + 3 modulo 
8 * 3 * 2 = 48, which is either 19 or 35 mod 48 depending on the parity of 
m. In either case we find c(z, p) = 1 as c(-3/2, 35) = c(11, 35) = 1 and 
c(-3/2, 19) = c(7, 19) = 1. 

Assume now that p =- 1 mod 16. In this case we want an element c(z, p) = 
0, and this time no power of 2 seems to work for z. We can however work 
with powers of 3, a phenomenon that already occurs in Estes's proof of this 
result. Observe first that c(3, p) = [s], so c(3, p) = 0 when p _ 31 mod 48. 
We may therefore assume that p -1 mod 48. Write p = u * 3m - 1 with 
u divisible by 16 but not by 3 and m > 1. We claim that c(z, p) = 0 for 
z = 2 . 3m+1. This time p mod 8z = 243m+1 depends on u mod 3, so we 
distinguish two cases. 

If u _ 1 mod3, we have c(2 * 3m+I,p) = c(2 * 3m+1, 16 * 3m - 1) = 

c(3/8, 16 . 3m - 1). This reduces for odd m to c(3/8, 47) = c(13, 47) = 0 
and for even m to c(3/8, 143) = c(45, 143) = 0. 

If u _ -1 mod3, we have c(2 * 3m+I,p) = c(2 * 3m+1, 32 * 3m - 1) = 

c(3/16, 32 .3m - 1). This reduces for odd m to c(3/16, 95) = c(18, 95) = 0 
and for even m to c(3/16, 287) = c(54, 287) = 0. This finishes the proof of 
Lemma 2.7 and of Theorem 2.5. 5 
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Criteria in the spirit of our Theorem 1.3 can also be derived by studying the 
signatures of the cyclotomic units in Q(Cp) . One uses the analytic fact that hp+ 
is the index of the group of cyclotomic units in the full unit group of Q[Cp] and 
works inside the real cyclotomic field Q(p)+ . We will indicate this approach, 
which is more common in the literature [3, 4, 5, 6, 7] in the rest of this section 
and compare the results obtained to ours. 

For parity questions, one has first of all the following equivalences. 

2.8. Lemma. Thefollowing are equivalentfor a prime number p: 
(i) hp is odd; 

(ii) hp is odd; 
(iii) hp+,narrow is odd. 

Proof. The equivalence (i) X (ii) follows from implication (1.1) in the intro- 
duction. 

For (i) X (iii) we use arguments as in 2. 1. As any abelian extension F/Q(4p )+ 
that is unramified at all finite primes and of even degree gives rise to an unram- 
ified extension F(4p)/1Q(4p) that is totally unramified of the same degree, we 
see that hp+, narrow divides hp, so hp is even if hp+, narrow is even. Conversely, if 
hp is even there is an unramified abelian extension F/IQ(p) of 2-power degree 
such that F/Q(Cp)+ is Galois, say with group H. Let I c H be an inertia 
group of a prime of F lying over p. As the 2-group H is solvable, it has a 
norrnal subgroup N of index 2 that contains the subgroup I of order 2. The 
fixed field of N is a quadratic extension of Q(Cp)+ that is unramified at all 
finite primes, so it follows that hp+ narrow is even. o 

The last condition in the preceding lemma gives rise to parity conditions in 
terms of cyclotomic units. We need some additional notation in order to state 
them. 

Let E be the unit group of the ring of integers Q(Cp)+ . Then (4p) * E is 
the unit group in Q(Cp), and we call a unit in this group cyclotomic if it is in 
the subgroup of Q(4p)* generated by Cp and the nonzero elements of the form 
1 - pi. The group of cyclotomic units is generated by Cp and the group C 
of real cyclotomic units. As abelian groups, both E and C can be written as 
the product of their torsion subgroup (-1) and a free abelian group on q - 1 
generators, with q = (p - 1 )/2 the degree of Q(Cp)+ over Q. The analytic class 
number formula for Q(Cp)+ states [9, Theorem 5.1] that the index [E: C] is 
equal to the class number hp+ . 

In order to study the parity of hp+ #(E/ C), we define a signature map on 
Q(Cp)+ that respects the action of G = Gal(Q(Cp)+/Q). Let sgn: ]R* -- F2 be 
the signature map with values in the additive group F2 rather than in (-1) . 
From now on, we fix an embedding Q(4p) c C by taking Cp = e2,1p . Then 
sgn(x) E F2 is well defined for any nonzero x E Q(Cp)+, and we have the 
G-homomorphism 

S: ((Q(4p)+)* FA[G] 

X E sgn(g-l(x)) g. 
gEG 

For parity questions, one studies the values of S on E and C. From the 
structure of the abelian group E one sees that the signature map S: E -+ FAG] 



780 PETER STEVENHAGEN 

is surjective if and only if the subgroup E+ = kerSIE of totally positive units 
coincides with the subgroup E2 of squares in E. An analogous remark applies 
to the group C. 

2.9. Lemma. Let p be a prime number. Then hp is odd if and only if S maps 
the group of real cyclotomic units C surjectively to the signature space FAG]. 
Proof. By the preceding lemma, hp is odd if and only 

hp+,narrow 
is odd. As 

hp+,narrow = [F2[G]: S[E]] * hp+, we conclude that hp is odd if and only if 
S[E] = FAG] and hp+ = [E: C] is odd. If these two conditions are satisfied, 
then S[C] = S[E] = F2[G] because the index [S[E]: S[C]] is odd and divides 
1F2[G]I = 2q. Conversely, if S[C] = F2[G], then we have S[E] = F2[G] and 
E = C * kerSIE = CE2, which implies that the order hp of E/C is odd. f 

The subspace S[C] c F2[G] can be described explicitly, as we know C 
explicitly. Let a denote a generator of G, and set ?i1 = (-p - 1- 1) for 
i E Z. Note that 'q = -1 and that qi+q = - i. The group C is generated 
by the elements Ui with i = 1, 2, ... , q. From the relation Qi+k = k(li)6k 
it follows inductively that ?ji generates C/(-1) over the group ring. As S 
maps -1 to NG = EgEG g, we have an induced homomorphism between 
cyclic F2[G]-modules: 

S: C = C/(-1) -+ F2[G]/NG - F2[X]/oq(X). 
Under the last isomorphism, the generator a of G corresponds to X. The 
image of C in F2[X]/1q(X) is the ideal generated by S(?t1), so the class 
number hp is odd if and only if 3(qj) is a unit in F2[X]/Iq(X) . 

We have obtained a criterion analogous to our Theorem 1.3. It immediately 
yields 2.3 by observing that S is not the zero map for p > 3-it suffices to note 
that Cp + C; 

I cannot be in the kernel-and also 2.4 with hp- replaced by hp. 
One can give 3(?71) explicitly as a polynomial. An element ai e G acts on 

?li = q?1i0 by shifting the indices over i places. Writing si = sgn(?I-i) e F2 
and H= Eq--l siXi, we obtain sgn(a-(T ()) = si-i + si and therefore 

q q-1 

S(q1) = E(Si-l +Si)Xi =SqXq+(X+ )Esixi+SO 
i=1 i=O 

= 1 + (X + l)H(X) E F2[X]/Iq - 
In order to compute si, one picks a generator t E (Z/p)* . From the definition 
of ?7i = (4p- _ pt')/(4p - C;-') it is immediate that sgn(qi) = 0 if and only if 
(t' mod p) is in one of the residue classes (a mod p) with a E { 1, 2, ... , q}. 
We have reproved the main theorem of Davis's paper [3], which can be stated 
as follows. Note that our argument avoids most of the explicit computations in 
[3] by exploiting the G-action on C. 

2.10. Theorem. Let p = 2q + I be a prime number and t a primitive root 
modulo p. Define Si e F2 by setting si = 0 if and only if ti = a mod p for 
some a E {1, 2, ..., q}, and let H - : siXi. Then hp is divisible by the 
index of the ideal generated by 1 + (X + 1)H(X) in F2[X]/4(q. 

The criterion obtained is similar to ours, as the coefficients ci of the polyno- 
mial Fq = E2q-1 ciXi from 1.3 can be defined by letting ci = I if and only if 
ti = ?a mod p for some a E {1, 2, .. .,(q - 1)/2}. 
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3. HEURISTICS 

In this section we will show that under certain assumptions of randomness, 
the number of Sophie Germain primes for which hp is even is a finite number 
whose expected value is very close to zero. 

As before, we denote for a Sophie Germain prime p > 5 the prime number 
(p- 1)/2 by q . Let f(q) be the order of 2 in the multiplicative group (Z/qZ)*. 
Our parity Criterion 1.3 states that hp is even if and only if the element Fq is 
not a unit in the finite algebra 

F2[X](Dq (X) r'- (F2f(q) )q / q 

A random element in this algebra is a nonunit with probability 

7r(q) = 1 - (1 - 2-f(q))(q-l)/f(q) 

Since we are unable to prove very much about Fq, we will base our heu- 
ristic analysis on the assumption that Fq behaves like a random element in 
F2[X]/Dq(X) when q ranges over the primes q > 2 for which p = 2q + 1 is 
prime. Under this assumption, we expect Eq 7r(q) Sophie Germain primes p 
for which hp is even. We prove the following result. 

3.1. Theorem. The sum Eq ir(q) over all primes q > 2 for which 2q + 1 is 
prime is finite. 

Proof. From the inequality (1 - 2-f)(q-l)/f > 1 - (q - 1)/(f 2f) it follows that 
the terms of our sum satisfy 

2r(q) = 1-(1 - 2-f(q))(q-1)/f(q) < q- 1 - f(q) 2f(q)~ 

Ordering the values of q over which the sum is taken by the size of the corre- 
sponding value of f(q), we rewrite the sum as 

ZWf with Wf Z E (q), 
f=2 q: f(q)=f 

with q ranging over the odd primes for which 2q + 1 is prime, and estimate 
each of the terms wf . 

For given f, all primes q with- f(q) = f are divisors of 2f - 1, so the 
number of such q cannot exceed f . For the primes q that satisfy q < 2f/2 
one has 

7rq q-1 
(q) - f 2f < f2f/2' 

so the contribution of these q of wf does not exceed 2f/2. If 2f - 1 has a 

prime divisor q > 2f/2, then this prime divisor is obviously unique. For such 
q, we will obtain two different estimates for 7r(q), depending on whether f is 
prime or composite. 

If f is composite, it has a divisor d > Vlf, and the definition of f(q) 

shows that q divides (2f - 1)/(2d - 1) < (2f - l)/(2V7 - 1), so in this case 
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we have 

7r(q) < q1 
f(2/f - 1) 

If f > 2 is prime, then q $ 2f - 1 for the q that contribute to wf, as 
equality would imply that p = 2q + 1 _ 0 mod 3. All prime factors of 2f - 1 
are congruent to 1 mod f, so they are bounded from below by 2f + 1 . It 
follows that q < (2f - 1)/(2f + 1), and consequently 

7rf(q) < f2 < 2f2- 

We conclude that 

(3.2) Wf < + 2f /2 + f(ffl2f2 

for every f > 2. In particular, we obtain a convergent sum when summing 
over f. o 

Our heuristic approach suggests that counterexamples to Conjecture 1.2, if 
they exist, should be found for small values of f(q) rather than for small values 
of q itself. Table 3.3 lists all values q > 2 for which p = 2q + 1 is prime and 
f(q) < 100. In the column "hp odd?" we list 2.3 and 2.5 if the class number is 
odd, because the hypotheses for these theorems are satisfied. For the remaining 
20 values of p we have attempted the numerical verification of the criterion 
given in Theorem 1.3. For the 12 values of p below 2500 this could be done on 
the Pari-calculator, and these cases have been marked P. All other primes in 
the table except for the largest prime p = 841557503 were dealt with by Bert 
Ruitenburg, who used Maple (M) in six cases and a special-purpose C-program 
for p = 26529059. 

In the larger cases one can reduce the time needed for the computation by 
running the algorithm on parallel machines. This is due to the fact that one 
knows in principle how the cyclotomic polynomial cDq factors over the field 
F2. Thus, once one has computed the polynomial Fq in 1.3, one can check 
the criterion by verifying that Fq does not vanish on any primitive qth root 
of unity in F2f(q) . It is easy to find one such root of unity Cp once one has 
"constructed" F2f(q) by exhibiting an irreducible polynomial of degree f(q) 
over F2. The algorithm then reduces to (q - 1)/f(q) independent verifications 
showing that Fq(a) :$ 0 for all a E (Z/qZ)*/(2), so it is easily run in parallel. 

Combining the results in the table with Corollary 2.4, we immediately obtain 
a proof of Theorem 1.4 stated in the introduction. It is also clear that the 
exponent in this theorem can be increased by extending the range of our table 
and performing the necessary computations. 

As another consequence of our numerical work, we can bound the number of 
expected counterexamples to Conjecture 1.2 rather drastically by considering in 
the sum Eq 7r(q) from Theorem 3.1 only those q for which f(q) > 95. Using 
the rough estimate from (3.2), one expects to find at most Ef>95 wf < .01 
counterexamples. As Table 3.3 already suggests, the exact value of this sum is 
much smaller than .01 . This heuristic argument convinces us that Conjecture 
1.2 must be true "for lack of counterexamples". 
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3.3. Table. Sophie Germain primes p = 2q + 1 with f(q) < 100. 

f(q) q p I r(q) hpodd? 
2 3 7 .25 2.3 
4 5 11 .0625 2.3 
10 11 23 .0009765625 2.3 
11 23 47 .0009763241 2.5 

89 179 .0038995808 P 
20 41 83 .0000019073 P 
22 683 1367 .0000073909 P 
28 29 59 .37253 E- 8 2.3 

113 227 .14901 E-7 P 
29 233 467 .14901 E-7 P 

1103 2207 .70781 E-7 P 
34 43691 87383 .74797 E-7 M 
43 431 863 .11369 E-11 P 
46 2796203 5592407 .86384 E-9 M 
47 2351 4703 .35527 E-12 P 

13264529 26529059 .20053 E-8 C 
52 53 107 .22204 E-15 2.3 
53 69431 138863 .14544 E - 12 M 
58 59 119 .34694 E-17 2.3 
64 641 1283 .54210 E-18 P 
68 953 1907 .47434 E-19 P 
70 281 563 .33881 E-20 P 

86171 172343 .10427 E-17 M 
71 228479 456959 .13629 E-17 M 
82 83 167 .20680 E - 24 2.3 
92 1013 2027 .22214 E-26 P 

30269 60539 .66441 E-25 M 
95 - 191 383 .50487 E-28 2.5 

1420778751 841557503 .11181 E - 21 ? 
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